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Abstract

Recently, we proposed an optimization strategy for spatial and non-spatial mixed queries. In the strategy, the filter step and the

refinement step of a spatial operator are regarded as individual algebraic operators, and are early separated at the algebraic level by

the query optimizer. By doing so, the optimizer using the strategy could generate more diverse and efficient plans than the traditional

optimizer. We called this optimization strategy the Early Separated Filter And Refinement (ESFAR).

In this paper, we improved the cost model of the ESFAR optimizer considering the real life environment such as the LRU buffer,

the clustering of the dataset, and the selectivity of the real data distribution. And we conducted a new experiment for ESFAR by

comparing the optimization result generated by the new cost model and the actual execution result using real data. The experimental

result showed that our cost model is accurate and our ESFAR optimizer estimates the costs of execution plans well.

Since the ESFAR strategy has more operators and more rules than the traditional one, it consumes more optimization time. In

this paper, we apply two existing heuristic algorithms, the iterative improvement (II) and the simulated annealing (SA), to the ESFAR

optimizer. Additionally we propose a new heuristic algorithm to find a good initial state of II and SA. Through experiments, we

show that the II and SA algorithms in the ESFAR strategy find a good sub-optimal plan in reasonable time. Mostly the heuristic

algorithms find a lower cost plan in less time than the optimal plan generated by the traditional optimizer. Especially the II al-

gorithm with the initial state heuristic rapidly finds a plan of a high quality. � 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

The processing cost of the spatial query is very ex-
pensive because spatial data is more complex and larger
than non-spatial data. Therefore, the spatial query has
been processed mostly in two steps, the filter step and
the refinement step (Orenstein, 1986). However, this
approach has been considered not in the query opti-
mization phase but in the query execution phase. The
state-of-the-art query optimizers (Aref and Samet, 1991;
Becker and G€uuting, 1992; Ooi et al., 1989) did not sep-
arate the filter and refinement steps hidden in the alge-
braic operators from the optimization phase. They
converted the filter and refinement steps together to one

algebraic operator. However, when spatial predicates
and non-spatial predicates are mixed in a query and
if spatial indexes exist on a class referenced by spatial
predicates, the separation of filter and refinement steps
starting from the algebraic operator level can provide
opportunities to generate more efficient execution plans
to the optimizer.

1.1. Related work

Several spatial database systems have addressed
the optimization problem for the spatial and non-spatial
mixed query in the literature (Samet and Aref, 1995).
GEOQL’s optimizer decomposes a spatial query into
spatial subqueries and non-spatial subqueries (Ooi et al.,
1989). The decomposed subqueries are optimized sepa-
rately and participate in an order that minimizes the
overall query cost. The non-spatial subqueries are pro-
cessed by the SQL backend and the spatial subqueries
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by the spatial query processor. Because of the decom-
position, this optimization technique may prohibit an
arbitrary ordering between spatial operators and non-
spatial operators and decrease the optimization quality.
GRAL (Becker and G€uuting, 1992) performs a rule-based
optimization using an algebra which is called the geo-
relational algebra. GRAL’s optimizer uses a pre-defined
partial order between some algebraic operators to find a
good execution order in a heuristic manner. SAND’s
optimizer (Aref and Samet, 1991) provides an equal
opportunity for both spatial and non-spatial data and
uses several optimization strategies to make an efficient
ordering and merging for spatial and non-spatial oper-
ations. Paradise uses basic relational operators and
optimization techniques for both spatial and non-
spatial operations (Patel et al., 1997). Paradise’s query
optimizer is written by an optimizer generator called
OPT++ (Kabra and DeWitt, 1996). However, none of
the above optimizers considers the filter and refinement
steps of spatial operators separately as individual oper-
ators. Therefore, the above optimizers cannot generate
the plans which will be presented throughout this paper.

1.2. Summary of our work

Our recent research (Park et al., 1999, 2000) pre-
sented query optimization strategies which addressed
this problem. The first strategy is an early separation of
the filter and refinement steps, which means the sepa-
ration is actually done in the query optimization phase
instead of the query execution phase. As the second
strategy, several refinement operations can be combined,
and as the third strategy several filter operations can
also be combined. We called the optimization technique
utilizing these strategies the Early Separated Filter And
Refinement (ESFAR).

This paper also presented a rule-based optimization
technique for ESFAR. The input query of a rule-based
optimizer is in an algebraic form. In this paper, we used
the Spatial Object Algebra (SOA) (Park et al., 1997) to
represent the input query of our optimizer. In addition,
we needed a new object algebra for ESFAR which
separates the operators in SOA into filter step operators
and refinement step operators. We defined the Interme-
diate Spatial Object Algebra (ISOA) as the new object
algebra. Using ISOA, we derived some optimization
rules for ESFAR. In this paper, we implemented the
execution algorithms for ISOA. Through experiments
using the TIGER data (US Bureau of the Census, 1995),
we showed that the ESFAR optimization strategy gen-
erates more efficient query execution plans than the
traditional one in many cases.

In this paper, we improved the cost model of the
ESFAR optimizer, and implemented the ESFAR opti-
mizer using the Volcano optimizer generator (VOG)
(Graefe and McKenna, 1993), and ran the optimizer for

the TIGER data, and compared the optimization results
and the actual execution results. Especially our im-
proved cost model considered the real life environment
such as the LRU buffer, the clustering of the data, and
the selectivity considering the real data distribution
while our old cost model (Park et al., 1999) assumed the
uniform distribution of spatial and non-spatial objects,
and no buffering and no clustering. And we conducted
a new experiment for ESFAR by comparing the opti-
mization result generated by the new cost model and the
actual execution result using the TIGER data. Accord-
ing to the experimental result, the optimization results
were similar to the actual execution results in most cases.
The experimental result showed that our cost model is
accurate and our optimizer estimates the lowest cost
execution plan well.

Actually the ESFAR optimization technique always
generates more efficient execution plans than the tradi-
tional optimization technique because the ISOA opera-
tors include the traditional operators and the ESFAR
rules include the traditional optimization rules. How-
ever, because of more operators and more rules, the
ESFAR optimizer consumes more optimization time
than the traditional optimizer. In this paper, we apply
heuristic algorithms to the ESFAR optimizer.

VOG internally has the exhaustive search algorithm
to generate the optimal plan. We replaced the exhaustive
search algorithm with heuristic search algorithms. As
the heuristic search algorithms, we implemented the two
representative hill climbing algorithms (Ioannidis and
Kang, 1990), the iterative improvement (II) and the sim-
ulated annealing (SA). II and SA randomly choose the
initial state. However, in the hill climbing algorithm, a
well chosen initial state may improve both the optimi-
zation time and the optimization quality significantly. In
this paper, we propose a new algorithm for selecting an
initial state of II and SA considering the characteristics
of the ESFAR strategy.

Through experiments, we show that the II and SA
algorithms in the ESFAR strategy find good sub-opti-
mal plans in reasonable time. Mostly the heuristic al-
gorithms find plans whose costs are lower than that of
the optimal plan generated by the traditional optimizer.
Especially the II algorithm with the initial state heuristic
rapidly finds a plan of a high quality.

1.3. Paper organization

The remainder of this paper is organized as follows.
In Section 2, we describe ESFAR which is regarded as
the background for this work. Sections 2.1–2.3 sum-
marize our previous work and Sections 2.4 and 2.5
contain our new contributions which are the improved
cost model and a new experiment. In Section 3, we apply
two hill climbing algorithms, II and SA, to the ESFAR
strategy and propose a new algorithm for finding a good
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initial state. The experimental results are presented in
Section 4. In Section 5, we conclude this paper.

2. ESFAR

We have the following assumptions in this section:

1. We consider only SEL(ECT) and JOIN operations
among the SOA operators because only both the op-
erators are able to have spatial or non-spatial predi-
cates.

2. We consider only the R�-tree (Beckmann et al., 1990;
Brinkhoff et al., 1993) as a spatial indexing and the
B+-tree as a non-spatial indexing because they are
the most general indexing methods in spatial data
and non-spatial data, respectively.

2.1. Strategy

We illustrate our optimization strategy using an ex-
ample. Suppose that a mixed query which consists of a
spatial select operation (S_SEL) and a non-spatial select
operation (N_SEL) was issued by the user. If the sepa-
ration of filter and refinement of the S_SEL operation is
possible at the algebraic operator level of the query
optimizer and an R�-tree exists for the spatial attribute,
the S_SEL operation can be separated into the spatial
select filter (SSF) and the spatial select refinement (SSR)
operations. Obviously, SSR is a SEL operation of the
relational algebra because it is generated from a select
operation (S_SEL). Therefore, the above query can
be transformed into a query which is in the order of
‘‘SSF – N_SEL – SSR’’ by the select commutative rule
of the relational algebra. The processing of the original
query in the order of ‘‘SSF – N_SEL – SSR’’ can be
more efficient than the order of ‘‘N_SEL – S_SEL’’ or
‘‘S_SEL – N_SEL.’’ If the filter and refinement steps of
S_SEL are not separated at the algebraic operator
level, the plan like ‘‘SSF – N_SEL – SSR’’ cannot be

generated, but only the plan like ‘‘N_SEL – S_SEL’’ or
‘‘S_SEL – N_SEL’’ can be generated.

The spatial join operation (S_JOIN) can also be
separated into the spatial join filter (SJF) and the spatial
join refinement (SJR). And, SJR, like SSR, is a SEL
operation of the relational algebra because the join op-
eration between two input classes has already been
performed by SJF which is the filter step (Remind the
following relational algebra rule: JOINh1 ^ h2ðR; SÞ ¼
SEL h1ðJOINh2ðR; SÞÞ.). Therefore, all relational alge-
bra rules related to SEL can also be applied to SJR.
One important thing to be considered about a spatial
predicate is that the filter step predicate is different from
the actual predicate as pointed out in (Papadias et al.,
1995).

As we saw in the above example, separating a spatial
operation into filter and refinement steps at the algebraic
operator level enables the optimizer to generate more
efficient execution plans in some cases. Therefore, the
first optimization strategy for mixed queries is as fol-
lows:

Strategy 1 (Early separation of filter and refinement).
Separate spatial operations into filter step operations
and refinement step operations at the algebraic operator
level.

During the mixed query optimization, the refinement
operation can be combined with other non-spatial op-
erations to be processed in a unit. As we mentioned in
the previous paragraphs, all refinement operations cor-
respond to the SEL operation of the relational algebra.
Therefore, due to the select-merge (cascade of select)
rule of the relational algebra (Silberschatz et al., 1997),
the refinement operation can be combined with other
non-spatial select operations to generate another SEL
operation. We call the combining of non-spatial select
operations and spatial refinement operations the com-
bined refinement. The second strategy for the mixed
query optimization is the combined refinement.

Fig. 1. Oid-intersection between spatial and non-spatial operations.
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Strategy 2 (Combined refinement). Combine the refine-
ment steps of the spatial operations with non-spatial
select operations or other spatial refinement operations
by the select-merge rule.

As the case of the combined refinement, the spatial
filter operation can be combined with other non-spatial
filter operations if the non-spatial operations can be
evaluated by the indexes. This can be done by applying
the Oid-intersection technique (Mohan et al., 1990) and
the Oid-join technique (Blasgen and Eswaran, 1977; Cho
et al., 1997; Valduriez, 1987) to spatial and non-spatial
mixed query processing.

Figs. 1 and 2 show the Oid-intersection technique and
the Oid-join technique respectively between the results
of a typical spatial operation and a typical non-spatial
operation. In the above figures, Oid-intersect and Oid-
join are the INTERSECT operation and the NATU-
RAL JOIN operation between oid-tuple collections,
respectively. Since the index probing for the spatial
operation can get the oid-tuple collection only for can-
didate objects, we append the refinement step to the
original Oid-intersection or Oid-join technique to obtain
the actual result. The combining of non-spatial filter
operations and spatial filter operations is called the
combined filtering, which is the third strategy for the
mixed query optimization.

Strategy 3 (Combined filtering). Combine the spatial
filter operations with non-spatial filter operations or
other spatial filter operations using the Oid-intersection
or Oid-join technique.

Since the intersect operation is a special case of the
join operation, 1 we will consider only the Oid-join from
now on. Since the Oid-join is an operation between only
oid-tuple collections, its cost may be much cheaper than

the join between object-tuple collections. The combined
filtering makes use of the spatial indexes and the non-
spatial indexes asmuch as possible, and does not generate
the intermediate results except the oid-tuple collections.
Therefore, we expect that Strategy 3 will have a large ef-
fect in the spatial and non-spatialmixed query processing.

2.2. Algebra

In Section 2, we separated some algebraic operators
of the SOA into those of filter and refinement steps.
Non-spatial objects can also be processed in two steps
like spatial objects. As the first step, if B+-trees was
already built on the classes which are referenced in the
non-spatial predicates of the query, we can get the object
identifiers of the query result by accessing only the B+-
trees. At the second step, the objects in the database are
retrieved using the object identifiers which were ob-
tained from the first step. We also call the first step the
filter step and the second step the refinement step for the
non-spatial query. Obtaining the object identifiers not
for the candidates but for the exact result is different
from the spatial filter and refinement. There is no extra
CPU-time in the refinement step because the step only
retrieves the real objects for the object identifiers which
were obtained from the filter step.

The operators which correspond to the filter step or
the refinement step are actually in the intermediate form
between the algebraic operators and the physical oper-
ators because the separations are only for the purpose
of optimization. We call such an intermediate form of
SOA the Intermediate Spatial Object Algebra (ISOA).
The ISOA has the following operators in addition to the
SOA operators:

(1) filter step operators
SSF, SJF, NSF (Non-spatial Select Filter), NJF

(Non-spatial Join Filter), OJ (Oid-Join)
(2) refinement step operators

SSR, SJR, NSR (Non-spatial Select Refinement),
NJR (Non-spatial Join Refinement)

Fig. 2. Oid-join between spatial and non-spatial operations.

1 If the types of two input tuple collections to be joined are the

same, the natural join between the collections becomes the intersect

operation.
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As the case of the SOA (Park et al., 1997), the spatial
operators and non-spatial operators are not actually
distinguished in the ISOA. Therefore, SSF and NSF are
represented as SF (Select Filter), SSR and NSR as SR
(Select Refinement), SJF andNJF as JF (Join Filter), and
SJR andNJR as JR (Join Refinement). In addition, as we
mentioned in Section 2.1, all the refinement operations
correspond to the SELoperationof the relational algebra.

2.3. Rules

In this section, we present optimization rules for
Strategies 1 and 3 using the ISOA. As we mentioned in
Section 2.1, the optimization rule for Strategy 2 is de-
rived by the select-merge rule of the relational algebra.
First, we present optimization rules for Strategy 1.

In the following rules, hR denote a spatial predicate
or non-spatial predicate for the class R, and hR;S denote
a spatial predicate or non-spatial predicate between the
classes R and S.

Rule 1. (SEL hR (R) ) ¼ (SR hR (SF hR (R) ) )

Rule 2. (JOIN hR;S (R, S) )¼ (JR hR;S (JF hR;S (R, S) ) )

In Figs. 1 and 2, we saw the combined filtering ex-
amples only for two predicates. The combined filtering
between two predicates may be simple because such a
combining is only an Oid-join between two oid-tuple
collections resulting from each filter step operation.
However, if the number of predicates in a query is more
than two, the combined filtering between them may be
complicated. A complex query with multiple predicates
can be converted to an SOA expression each of whose
algebraic operators has only one predicate. Then, the
predicates in the SOA expression can be evaluated in an
order like that of the tree traversal and the combined
filtering between them can be represented by the se-
quence of Oid-joins. In that case, the combined filtering
can be done by applying the separation of an operator
which has oid-tuple collections as inputs and the Oid-
join simultaneously.

The following rules are about the separation of the
non-spatial or spatial operation and the Oid-join tech-
nique for complex mixed queries. In the following rules,
ER, ES and ER;S denote oid-tuple collections whose tuple
elements include the oid of the class R, the class S and
both, respectively.

Rule 3. (SEL hR (ER) )¼ (SR hR (OJ (ER, SF hR (R) ) ) )

Rule 4. (SEL hR;S (ER;S) )¼ (JR hR;S (OJ (ER;S , JF hR;S (R,
S) ) ) )

Rule 5. (JOIN hR;S (ER, S) )¼ (JR hR;S (OJ (ER, JF hR;S (R,
S) ) ) )

Rule 6. (JOIN hR;S (R, ES) )¼ (JR hR;S (OJ (JF hR;S (R, S),
ES ) ) )

Rule 7. (JOIN hR;S (ER, ES) )¼ (JR hR;S (OJ (ER, OJ (JF
hR;S (R, S), ES) ) ) )

We will give an example to show the application of
the above rules to a complex query. Consider the fol-
lowing OQL query:

OQL 1. select a from a in buildings, b in

roads, c in districts where a.shape s touch
b.route and a.shape s covered by c.boundary

and a.comp_date< ‘‘80/01/01’’ and c.boundary
s intersect s_rectangleðx1; y1; x2; y2Þ;

Let h1; h2; h3 and h4 be a.shape s touch b.route,
a.shape s covered by c.boundary, a.comp_date
< ‘‘80/01/01’’ and c.boundary s intersect
s_rectangle ðx1; y1; x2; y2Þ, respectively. Eq. (1) is an
SOA-expression for OQL 1.

S JOIN h2 S JOIN h1 N SEL h3 ðaÞ; bð Þð ;

S SEL h4 ðcÞÞ: ð1Þ

By applying Rule 1, the select-join commutative rule and
the select-merge rule of the relational algebra to Eq. (1)

SEL h3 ^ h4 S JOIN h2 S JOIN h1 NSFh3 ðaÞ; bð Þ;ðð
SSFh4 ðcÞÞÞ: ð2Þ

By Rule 4, the select-join commutative rule and the se-
lect-merge rule

SELh3 ^ h4 ^ h1 S JOIN h2 OJ NSF h3 ðaÞ;ððð
SJF h1 ða; bÞÞ; SSF h4 ðcÞÞÞ: ð3Þ

By Rule 7, the select-join commutative rule and the se-
lect-merge rule

SELh3 ^ h4 ^ h1 ^ h2 OJ OJ NSFh3 ðaÞ;ððð
SJFh1 ða; bÞÞ;OJ SJFh2 ða; cÞ; SSFh4 ðcÞð ÞÞÞ: ð4Þ

2.4. Cost model

In our previous work (Park et al., 1999), we used a
simple cost model which assumed no buffering and no
clustering. In a real life environment, however, most
database management systems have the LRU buf-
fer. Therefore, we newly apply the LRU buffered cost
model to this implementation and the experiment of the
ESFAR optimizer. We use the TIGER data (US Bureau
of the Census, 1995) as our experimental data. Since the
TIGER data is clustered on a non-spatial attribute,
we apply the clustering cost model for non-spatial op-
erations. We also observed that our experimental data
is highly clustered on the spatial attribute. Therefore
we also apply the clustering cost model for spatial
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operations. The cost model used in these experiments
are summarized in Appendix A. 2 The TIGER data are
skewed for both spatial and non-spatial attributes. To
estimate the non-spatial selectivity well, we used the
equi-depth histogram (Piatetsky-Shapiro and Connell,
1984) whose number of buckets is 20. And for the spatial
selectivity, we used the equi-area histogram (Acharya
et al., 1999) whose number of buckets is 20 � 10.

2.5. Experimental results

To measure the performance of the ESFAR optimi-
zation strategies, we implemented an optimizer using the
VOG (Graefe and McKenna, 1993) and execution al-
gorithms of the ISOA operators. The experiments were
performed on SUN Ultra II 170 MHz workstation with
384 MB main memory which Solaris 2.5.1 was running
on. The page size and the number of LRU buffer entries
were fixed to 4 KB and 256, respectively. The experi-
mental data is the TIGER/Line data (US Bureau of the
Census, 1995) extracted from roads and hydrographies
of three counties of the California state. Our TIGER
data is sorted along the TLID (TIGER/Line IDenti-
fication number) field. We built the B+-tree on the
TLID field as the primary index and the R�-tree on
the line segment field as a secondary index for each
TIGER data. The statistics of the TIGER data used in
these experiments are summarized in Table 1. A and
H, respectively, represent CFCC (Census Feature Class
Code) (US Bureau of the Census, 1995) for roads and
hydrographies in the TIGER data in Table 1.

The query types used for these experiments are ‘‘non-
spatial select and spatial select’’, ‘‘spatial select and non-
spatial join’’ and ‘‘3-way spatial join’’. The experiments
were performed in two stages. At the first stage, we
measured the actual execution time of some possible
plans which can be generated by a traditional optimizer
and the ESFAR optimizer. At the second stage, we ran
the two optimizers and compared the optimization re-
sults and the actual execution results. The first stage was
performed in our previous research (Park et al., 2000).
Now we conduct experiments for the second stage. This

section includes the summary of the experimental re-
sults. 3 Tables 2 and 3 show one of the experimental
results of each stage, respectively. To see the detailed
results, refer to Park (2001).

Actually, the ESFAR optimizer always generates
more efficient execution plans than the traditional op-
timizer. This is because the operators and rules which
the ESFAR optimizer uses include those of the tradi-
tional optimizer. If the execution plan generated by the
rules of Section 2.3 is more expensive than that only by
the traditional rules, the ESFAR optimizer chooses the
execution plan by the traditional rules.

The first experiment was performed for the follow-
ing ‘‘non-spatial select and spatial select’’ type of
query:

OQL 2. select a from a in roads where a.LINE

s intersect s_polygonðx1; y1; . . . ; xn; ynÞ and a.TLID

>z;

In the above query, s_polygonðx1; y1; . . . ; xn; ynÞ is
a constant polygon, and z an integer constant. The
number of points of the constant polygon is 13.

Since the B+-tree exists on the non-spatial attribute
and the R�-tree on the spatial attribute, the traditional
optimizer will generate one of the following execution
plans:

• TRA1: B-tree-select – spatial select
• TRA2: R-tree-select with refinement step – non-spa-

tial select
The ESFAR optimizer will generate one of the following
execution plans, in addition to the above plans, which
are generated by the ESFAR strategies:
• ESFAR1: R-tree-select – non-spatial select – spatial

select refinement (Strategy 1)
• ESFAR2: R-tree-select – combined refinement (Strat-

egy 2)
• ESFAR3: (B-tree-select, R-tree-select) – Oid-intersect

– spatial select refinement (Strategy 3)

The selectivity (Snsp) of the non-spatial select is con-
trolled by the integer constant z and the selectivity (Ssp)

Table 1

The statistics of the TIGER data

County # of Objectives Average # of points MBR density Domain area ð105Þ
A H A H A H

Kern 113 407 26 014 3.7 8.9 0.26 0.32 26 � 10
Riverside 91 751 15 440 3.5 12.2 0.21 0.52 32 � 7
San Bernadino 146 026 28 187 3.5 12.4 0.22 0.40 37 � 19

2 In this paper, we do not develop a new cost model but newly apply

existing cost models to the clustered and buffered environment.

Therefore, we summarize the cost model in Appendix A rather than

presenting it in this section.

3 We describe the experimental result of the first stage in more detail

because the experimental result is considered as the basis of the

heuristic algorithm of the next section.
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of the spatial select by the size of the constant polygon
s_polygonðx1; y1; . . . ; xn; ynÞ. In the sequel, the selec-
tivity of the spatial select considers only the filter step by
MBR. The average hit ratio by the refinement step was
observed to be approximately 60%. The experimental
result shows, when Snsp is high and Ssp is low or both are
similar, ESFAR has benefits. Especially, if Snsp � Ssp is
large, ESFAR2 performs best. On the other hand, if the
difference is small, ESFAR3 using the Oid-intersection
technique has the best performance. If Snsp is lower than
Ssp, executing the non-spatial operation first (TRA1)
shows the best performance.

Next, we conducted an experiment for the following
query type which consists of a spatial select and a non-
spatial join:

OQL 3. select a,h from a in roads, h in hyd-

rographies where a.LINE s intersect s_polygon-
ðx1; y1; . . . ; xn; ynÞ and -z 6 a.TLID-b.TLID 6 z;

We measured the response time of several execution
plans from the above query with the varying spatial
selectivity and non-spatial selectivity. The non-spatial
join selectivity is determined by the range value z in the
above query. The execution plans from the traditional
optimizer are the following:

• TRA1: R-tree-select with refinement step – indexed
nested loop join

• TRA2: B-tree-join – spatial select using oid-pairs
The execution plans from the ESFAR optimizer are

the following in addition to the above plans:
• ESFAR1: R-tree-select – indexed nested loop join –

spatial select refinement (Strategy 1)
• ESFAR2: R-tree-select – combined refinement of

indexed nested loop join and spatial select (Strat-
egy 2)

• ESFAR3: (R-tree-select, B-tree-join) – Oid-join –
spatial select refinement using oid-pairs (Strategy 3)

Contrary to the case of ‘‘non-spatial select and spatial
select’’, the ESFAR strategies have many effects in the
case of the high spatial selectivity and the low non-
spatial selectivity. This is because if the non-spatial join
selectivity is low, many objects which are supposed to be
refined by the spatial select are filtered out by the join. If
the spatial selectivity is low (Ssp ¼ 0:01) or the non-
spatial join selectivity is high (z ¼ 25), executing spatial
selection first (TRA1) performs best in many cases be-
cause the result size from the spatial select is much
smaller than the join size.

Finally, we measured the response time for the fol-
lowing 3-way spatial join:

Table 3

Optimization results for the query of ‘‘spatial select and non-spatial join’’ type for Riverside county when the spatial select is performed on

hydrography data

Snsp z Traditional optimizer ESFAR optimizer

Plan Cost Res Plan Cost Res

1 TRA1 3787 O ESFAR3 2131 O

0.20 5 TRA1 4463 O TRA1 4463 X

25 TRA1 6997 O TRA1 6997 O

1 TRA1 918 O ESFAR2 750 O

0.05 5 TRA1 1082 O TRA1 1082 O

25 TRA1 1696 O TRA1 1696 O

1 TRA1 207 O ESFAR2 171 O

0.01 5 TRA1 243 O TRA1 243 X

25 TRA1 380 O TRA1 380 O

Table 2

Actual response time for the query of ‘‘spatial select and non-spatial join’’ type for Riverside county when the spatial select is performed on

hydrography data

Ssp z TRA1 TRA2 ESFAR1 ESFAR2 ESFAR3

1 3296 3789 2989 2593 2087

0.20 5 3917 6015 5745 3778 4231

25 7367 14 144 19 384 7622 13 773

1 816 3373 788 661 1284

0.05 5 961 4845 1527 978 2054

25 1650 10 330 4900 1796 8806

1 170 3258 150 137 1005

0.01 5 200 4511 279 199 1965

25 330 9431 849 352 7556
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OQL 4. select * from a in R, b in S, c in T

where a.LINE s intersect b.LINE and b.LINE

s intersect c.LINE;

The 3-way spatial join was performed for the road
data and the hydrography data of 3 counties, re-
spectively. An execution plan from the traditional opti-
mizer is

• TRA: R-tree-join between the first two classes – in-
dexed nested loop join

The execution plans from the ESFAR optimizer are the
following in addition to the above plan:
• ESFAR3: (R-tree-join, R-tree-join) – Oid-join – com-

bined refinement using oid-tuples (Strategies 2 and
Strategy 3)

Since the above query includes only spatial predi-
cates, Strategy 1 by itself does not contribute to reduce
the response time. Therefore, we excluded ESFAR1
in this experiment. In many cases, ESFAR3 has the
faster response time than TRA. This is because the
number of refinement operations in ESFAR3 is smaller
than that in TRA. Therefore, we expect that if the
spatial objects are more complex, the effect of the ES-
FAR strategy becomes bigger. The average hit ratio by
the spatial join refinement was observed to be approxi-
mately 25%. Sometimes, ESFAR3 performs worse
than TRA. This depends on the number of oid-tuples
resulting from the combined filtering. If the intermedi-
ate result size from the combined filtering is large, there
is a large overhead for reading oid-tuples and the rela-
vant objects, therefore ESFAR3 performs worse than
TRA.

For the above three types of queries, our optimizer
estimates the costs of the execution plans and the lowest
cost plan well. Wrong optimization results occur only
when the difference between the cheapest execution plan
and the second plan is small. Table 3 shows an optimi-
zation result for a query of ‘‘spatial select and non-
spatial join’’ type for Riverside county while Table 2
shows the actual response time for the query. In the cost
model of the spatial join, through trial and error, we set
the N � value of Eq. (A.31) to 100. And we set the c value
of Eq. (A.40) to 3.3 as in the case of the original paper
(Huang et al., 1997) because we use the similar datasets
as the paper did.

3. Heuristic approach

Until now, we used the exhaustive search strategy by
the dynamic programming built in the VOG as an op-
timization method. In the traditional select-join query,
the query optimization problem for the optimal solution
is known to be NP-complete (Selinger et al., 1979; Sil-

berschatz et al., 1997; Ullman, 1988). Since the ESFAR
optimizer has more algebraic operators and rules than
the traditional optimizer, the ESFAR optimization
problem is more complex than the traditional one.
Therefore, as the query becomes complex, a heuristic
algorithm for the ESFAR optimization is essential.
In this section, we present a heuristic approach for
ESFAR.

3.1. Randomized algorithms for query optimization

Since finding the optimal solution for a complex
query is very time consuming, or nearly impossible
because of the space complexity, many heuristic algo-
rithms have been developed. Among them, the ran-
domized algorithms (Ioannidis and Kang, 1990) such as
the II and the SA are best known.

In the query optimization problem, the whole search
space can be modeled as an undirected graph, each node
of which corresponds to an execution plan. A node in
the graph is called a state in the space and an edge
corresponds to a move. Randomized algorithms per-
form random walks between states until they find a sub-
optimal plan. A move is called downhill if it leads to a
lower cost plan, or uphill if it leads to a higher cost plan.
The randomized algorithm is also called the hill climb-
ing algorithm.

II continuously applies the following local optimiza-
tion: The local optimization algorithm starts with ran-
domly choosing an initial state in the space. Then it finds
a random neighbor by applying a possible transforma-
tion from the plan of the current state. If the move to the
random neighbor is downhill, the algorithm accepts the
move, else it finds another neighbor. The above random
move continues until there is no neighbor with lower
cost (i.e., it reaches a local minimum). If the stopping
condition is met, II terminates with the minimum of the
local minimum costs. Generally the stopping condition
is set to the number of iterations for the local optimi-
zations.

Algorithm II( )

(1) minS ¼ S1;
(2) WHILE NOT (stopping_condition) DO

(3) S ¼ random state;
(4) WHILE NOT (local_minimum(S)) DO

(5) S0 ¼random state in neigh-

bors(S);
(6) IF cost (S0) < cost(S) THEN

S¼ S0;
(7) END WHILE;
(8) IF cost(S) < cost(minS) THEN

minS ¼ S;
(9) END WHILE;
(10) return(minS);
END II
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While II accepts only downhill moves, SA accepts
uphill with some probability as well as downhill, trying
to avoid a high cost local minimum. As in the case of
II, the SA algorithm consists of two loops. The inner
loop of SA is called a stage. Each stage works with
a temperature T which determines the probability of the
uphill move. T (consequently the probability of the up-
hill move) gradually decreases as the stage number in-
creases. Each stage ends when it reaches an equilibrium.
An equilibrium is usually determined by a fixed number
of iterations of the inner loop. SA stops when T is near
to zero, i.e., the algorithm reaches the frozen state.

3.2. Selection of an initial state

The two algorithms of the previous section randomly
chose the initial state. In the hill climbing algorithm, a
well chosen initial state improves both the optimization
time and the optimization quality significantly. In the
experiments of Section 2.5, we showed some character-
istics of the performance of the ESFAR strategies for
simple queries. The efficiency of the ESFAR strategies is
primarily influenced by the selectivities of the spatial and
non-spatial selects and joins. First, only for a spatial
select and a non-spatial select, if the selectivity of the
non-spatial predicate is higher than that of the spatial
predicate or both are similar, ESFAR performs better.
Otherwise, i.e., if the selectivity of the non-spatial
predicate is lower than that of the spatial predicate,
the traditional query evaluation method evaluating the
non-spatial predicate first performs better. Second, for a
spatial select and a general join, 4 if the result size of the
spatial selection predicate is large and the selectivity of

the general join is low, ESFAR performs better. Oth-
erwise, the traditional approach evaluating the selection
predicate first performs better. In this section, we applied
the results of Section 2.5 to complex select-join queries
for selecting an initial state of the II and SA heuristics.

For select-join predicates, the traditional optimizer
usually applied the ‘‘selection as early as possible’’
heuristic (Selinger et al., 1979; Silberschatz et al., 1997;
Ullman, 1988). In a spatial and non-spatial mixed query,
however, it is no longer a good heuristic because the
evaluation cost of a spatial selection predicate can be
higher than that of a non-spatial join predicate in some
cases. We evaluate the non-spatial selection predicates
and the filter steps of spatial selection predicates as early
as possible against the refinement steps of spatial selec-
tion predicates and general join predicates because the
non-spatial selection predicates or the filter steps of
spatial selection predicates are generally cheaper than
the refinement steps of spatial selection predicates and
general join predicates.

First, we consider the selection predicates. For each
class, if there are one or more selection predicates, we
sort the selection predicates by the following order: (1)
index predicates; (2) remaining non-spatial predicates;
(3) all spatial predicates. The reason behind this order-
ing is that the index search is generally faster than the
sequential search, and for the sequential search the non-
spatial predicate evaluation is much cheaper than the
spatial predicate evaluation. If a spatial predicate has an
index, the predicate is divided into (1) index predicates
and (3) all spatial predicates because the index predicate
is evaluated only by the filter step and it must be eval-
uated again by the refinement step. In the above or-
dering, since the index probing for the spatial predicate
involves only the filter step, if the selectivities between
spatial and non-spatial predicates are similar, we assume
their index probing costs are also similar.

After the predicate ordering, we choose the most se-
lective two index predicates. Let the two predicates be p1
and p2, and their selectivities be Sp1 and Sp2 (Sp1 6 Sp2 ). If
there is no index predicate or only one index predicate,
Sp1 and/or Sp2 are assigned 1 because the whole search
must be performed when there is no index for a predi-
cate. The reason we choose the most two selective
predicates is for the possibility of the combined filtering
strategy using the index intersection. However, if the
index intersections are applied for too many predicates,
the performance may decrease. Therefore, we choose
maximally two predicates.

Based on the results of Section 2.5, we applied the
following heuristic rule for the selection predicates. If Sp1
is low or the difference between Sp1 and Sp2 is large,
perform SF 5 only for p1, else if the selectivity difference

Algorithm SA( )

(1) S¼random state;
(2) T ¼ T0;
(3) minS¼S;
(4) WHILE NOT (frozen) DO

(5) WHILE NOT (equilibrium) DO

(6) S0 ¼ random state in neigh-

bors(S);
(7) DC ¼ cost(S0) - cost(S);
(8) IF (DC6 0) THEN S ¼ S0;
(9) IF (DC > 0) THEN S ¼ S0 with

probability e�DC=T ;
(10) IF cost(S) < cost(minS) THEN

minS ¼ S;
(11) END WHILE;
(12) T ¼ reduceðT Þ;
(13) END WHILE;
(14) return(minS);

END SA

4 The general join means the spatial or non-spatial join. 5 The SF operator was defined in Section 2.2.
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is small and Sp2 is not equal to 1, perform the com-
bined filtering for p1 and p2 (i.e., SF for p1 – SF for p2 –
OJ). After evaluating index predicates, we evaluate
all unevaluated non-spatial predicates if any according
to the ‘‘selection as early as possible’’ heuristic rule.
Finally for all spatial predicates, if the estimated
result size for all selection predicates is small, we eval-
uate the spatial predicates, otherwise we defer the
spatial predicates evaluation until join predicates pro-
cessing.

After selection predicates processing, we sort join
predicates in an increasing order by the estimated result
sizes. If the input to a join is the result of another op-
eration, only the evaluated result until now is reflected
on the input to the join, i.e., the deferred evaluation is
not reflected on the input to the join. The following is
the heuristic rule between spatial selection refinements
and/or spatial join refinements and a general join based
on the results of Section 2.5. For each join predicate qj,
if Sqj is low and there are unevaluated spatial predicates
on child nodes, evaluating the non-spatial join or the
filter step of the spatial join first may be cheaper than
evaluating the child nodes’ spatial predicates first.
Therefore, in this case, we pull up the unevaluated child
nodes’ predicates over the non-spatial join or the filter
step of the spatial join.

Generally, the result of index operations such as the
B-tree select, B-tree join, R-tree select and R-tree join is
an Oid-tuple collection and these index operations cor-
respond to the filter step of the operations. When the
filter step of the join predicate (JF) is evaluated, 6 if OJ
is possible, i.e., if the evaluated results of all child nodes
are Oid-tuple collections, we perform the combined fil-
tering through OJ between the child nodes’ results and
the result of JF. By this combined filtering, we can
perform JF by only using indexes in a complex query
and we can save the object fetch cost. If OJ is not pos-
sible, we must perform JF with actual object fetches.

Meanwhile, if Sqj is high, we evaluate the unevaluated
child nodes’ predicates before the join evaluation be-
cause evaluating the non-spatial join or the filter step of
the spatial join first may be more expensive than eval-
uating the child nodes’ predicates first.

If qj is a spatial predicate, we defer the evaluation of
the predicate along with the pulled-up spatial predicates
from the child nodes until the processing of the next join
predicate.

In this way, if we have processed all join nodes, we
finally evaluate all unevaluated spatial predicates after
the last join. Our heuristic algorithm is shown below:

initial_state (Query Q, Classes R[])

(1) FOR each class Ri 2 R[] DO

(2) sort selection predicates by the

following order:

(3) index predicates – remaining

non-spatial predicates – all spa-

tial predicates;

(4) p1 ¼the most selective index

predicate if any;

/* if not, assume Sp1 ¼ 1 */
(5) p2 ¼the next selective index

predicate if any;

/* if not, assume Sp2 ¼ 1 */
(6) IF Sp1 is low OR Sp1 
 Sp2 THEN

(7) SF for p1;
(8) ELSE IF Sp1 � Sp2 AND Sp2 6¼ 1 THEN
(9) SF for p1 – SF for p2 – OJ;

(10) evaluate all unevaluated non-

spatial predicates if any;

(11) IF the estimated result size for

all selection predicates is small

THEN

(12) evaluate all spatial predi-

cates if any;

(13) ELSE

(14) defer evaluation of all spa-

tial predicates if any;

(15) END FOR;

(16) sort join predicates in an in-

creasing order by estimated re-

sult sizes;

(17) FOR each join predicate qj 2 Q DO

(18) IF Sqj is low THEN

(19) pull up the unevaluated child

nodes’ predicates if any;

(20) IF OJ possible THEN

(21) JF for qj;

(22) OJ with child nodes’ re-

sults;

(23) ELSE

(24) JF for qj; /* for non-spatial

join, JF ¼ ¼ JOIN */

(25) ELSE

(26) evaluate the unevaluated

child nodes’ predicates if any;

(27) JF for qj; /* for non-spatial

join, JF ¼ ¼ JOIN */

(28) defer evaluation of all uneval-

uated spatial predicates if any;

(29) END FOR;

(30) evaluate all unevaluated spatial

predicates if any;

END initial_state

6 For the non-spatial join, the filter step itself is the join.
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4. Experiments

We implemented the two representative randomized
search algorithms, II and SA, and added both algo-
rithms as the search engine of VOG. Additionally we
implemented our heuristic algorithm initial_state
for finding a good initial state for II and SA, respec-
tively. We call the two randomized algorithms with our
initial state heuristic IIis and SAis, respectively. The ex-
perimental environment such as the platform, the
memory size, the page size and the LRU buffer is the
same as Section 2.5. In these experiments, we assume
that both spatial and non-spatial data are synthetically
generated which are uniformly distributed. We used the
same cost model as Section 2.5 which is summarized in
Appendix A. The parameters of experimental data and
computation are summarized in Table 4.

The query types used in these experiments are as
follows:

(1) Q1: n-way non-spatial join with one spatial selec-
tion per class,
(2) Q2: n-way spatial join with one spatial selection
per class,
(3) Q3: n-way mixed joins with n mixed selections.

In Q3, each join is randomly selected between the
spatial join and the non-spatial join, and each selection
is also randomly selected between the spatial selection
and the non-spatial selection and randomly distributed

over n classes. For these types of queries, we ran the
following search algorithms:

(1) OPTTRA: the exhaustive algorithm built-in VOG
using the traditional rules for finding the optimal
plan,
(2) OPTESFAR: the exhaustive algorithm built-in VOG
using the traditional and ESFAR rules for finding the
optimal plan,
(3) II: the II algorithm using the traditional and ES-
FAR rules,
(4) SA: the SA algorithm using the traditional and
ESFAR rules,
(5) IIis: the II algorithm using the traditional and ES-
FAR rules with the initial state heuristic,
(6) SAis: the SA algorithm using the traditional and
ESFAR rules with the initial state heuristic.
In the above algorithms, the initial states of II and SA

are randomly generated. The parameters of II and SA
are summarized in Table 5. In Algorithm II, the initial
states are randomly generated for every local optimiza-
tion. This is done by a number of random transforma-
tions (5 � n in our experiments) regardless of the cost
from the previous local minimum plan. In ini-

tial_state heuristic, we set the criteria of the low
selectivity for the select operator to 1/20. If the total
selectivity for select operators per class is lower than 1/
20, we evelauated all refinement operations, otherwise,
we deferred the evaluation. If the difference between Sp1
and Sp2 is greater than 0.4, we regarded it as large. We
set the criteria of the join factor 7 to 1. If Jpi > 1, it is
regarded as high, else low. The reason is that if the join
factor is greater than 1, the join result size increases, else
decreases. If we defer an expensive refinement operation
in the join of decreasing size, there can be many chances
to filter out the objects to be refined in the non-spatial
join or the spatial join filter. However, in the join of
increasing size, there can be many duplications of the
objects to be refined in the join result. This may incur

Table 4

Parameters of experimental data and computation

Parameters Descriptions Values

kRk Number of objects in class Ra 100,000

D2 Area of total space 105 � 105
sR Size of non-spatial parts of an object in R 50 bytes

Page_Size Page size 4096 bytes

LRU buffer Number of LRU buffer entries 256

Point_Size Size of a point 8 bytes

DA Disk access time 10 ms

Tedge–rect CPU time for edge–rectangle test 40 ls
Tedge–edge CPU time for edge–edge test 20 ls
hitS Hit ratio for spatial selection 60%

hitJ Hit ratio for spatial join 25%

aContains both non-spatial part and spatial part.

Table 5

Parameters of II and SA

Parameters Values

II Stopping condition Equal time to SA

Local minimum 5 � n Consecutive uphill moves

SA Initial temperature T0 ¼ 2 � costðS0Þ
Frozen T < 1 and minS unchanged for

the last 4 stages

Equilibrium 10 � n
Temperature reduction Tnew ¼ 0:80 � Told

7 The join fortor is defined as J ¼ the join result size
the average of the join input sizes

. If the

join factor is high (low), the join selectivity is also high (low).
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the redundant I/O and computation. In this case, we
evaluated all the unevaluated refinement operations
before the join to reduce the join input size.

We analyzed the behavior of each algorithm for
query types Q1, Q2 and Q3 along the variation of the
selectivity for spatial and non-spatial operations and the
complexity of spatial objects (the average number of
points per spatial object) as follows:

(1) A1: the middle selectivity of selections and joins,
and the low complexity of spatial objects (Snsp ¼
Ssp ¼ 1=4, Jnsp ¼ Jsp ¼ 0:8, pts ¼ 20),
(2) A2: the middle selectivity of selections and joins,
and the high complexity of spatial objects (Snsp ¼
Ssp ¼ 1=4, Jnsp ¼ Jsp ¼ 0:8, pts ¼ 100),
(3) A3: the low selectivity of selections and the high
selectivity of joins, and the high complexity of spatial
objects (Snsp ¼ Ssp ¼ 1=16, Jnsp ¼ Jsp ¼ 4:8, pts ¼
100),
(4) A4: the high selectivity of selections and the low
selectivity of joins, and the high complexity of spatial
objects (Snsp ¼ Ssp ¼ 1=2, Jnsp ¼ Jsp ¼ 0:1, pts ¼ 100).

4.1. Experimental results for 5-way select-join queries

The first experiment was conducted for the 5-way
select-join query. Each query was performed five times
for each selectivity and complexity. Fig. 3 shows the
average scaled cost, which set the optimal cost of ES-
FAR to 1, found by the above six algorithms over time
for the 5-way select-join of query type Q1 with the
varying selectivity and complexity. We ran the II, SA,

IIis and SAis algorithms during 20 s. The optimization
time for TRA is similar for A1, A2, A3 and A4. Like-
wise, that for ESFAR is also mutually similar. The av-
erage optimization time for TRA is about 4 s, and that
for ESFAR is about 48 s. First, in the comparison of
TRA and ESFAR, the effect of ESFAR in A2 is larger
than that in A1. This means that the more complex
spatial objects are, the larger the effect of ESFAR is.
Among A2, A3 and A4, the ESFAR effect is best in A4,
worst in A3. This means that as the selectivity of the
selection is high and the selectivity of the join is low, the
effect of ESFAR becomes large. The experimental re-
sults between TRA and ESFAR are similar to those in
Section 2.5. However, the cost difference between TRA
and ESFAR is higher for the complex queries than for
the simple queries of Section 2.5.

Next, in the comparison of II and SA, the local
minimum costs found by II decrease faster than those
by SA in most cases, and the final costs of II in 20 s are
lower than those of SA in many cases. However, in the
case of A2, the final cost of SA is lower than that of II. II
and SA with the initial_state heuristic, i.e., IIis
and SAis, start with much lower initial costs. As the case
of II and SA, the cost of IIis decreases faster than that of
SAis. However, in the final cost, sometimes IIis is lower,
sometimes SAis is lower. In most cases, the heuristic
algorithms for ESFAR find a much lower cost plan than
the tradition optimal plan. In particular, IIis and SAis

are stabilized with the cost near to the ESFAR optimal
plan within 4 s which is the average optimization time
for finding the traditional optimal plan.

Fig. 3. Average scaled cost of plans over time for 5-way select-join queries: (a) A1; (b) A2; (c) A3; (d) A4.
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Fig. 5(a) compares the final costs after 20 s for the 5-
way select-join of query types Q1, Q2 and Q3. In the
cases of A2 and A4, for all query types, the costs of the
ESFAR heuristic algorithms are much lower than
the optimal plan cost of the traditional optimizer.
However, in the cases of A1 and A3, the cost differences
are small, and moreover in the case of A3 of Q3, the
costs of the ESFAR heuristic algorithms are slightly
higher than the optimal plan cost of the traditional
optimizer. In the comparison between II and SA or
between IIis and SAis, while sometimes II (or IIis) is
lower, sometimes SA (or SAis) is lower. In many cases,
the cost of IIis or SAis is lower than that of II or SA. As
shown in Figs. 3 and 5(a), in most cases, the plans
produced by our heuristics perform better than those by
TRA, and their costs have only small gab with the cost
of the optimal ESFAR plan.

4.2. Experimental results for large select-join queries

Fig. 4 shows the scaled cost 8 of the heuristic algo-
rithms over time for the large select-join of query type
Q1 with the varying selectivity and object complexity.
We cannot present the cost of TRA and ESFAR for
the large select-join query because we cannot obtain the
optimization result for the optimal algorithms due to the
limit of the system resource. Figs. 4(a) and (b) compare
the cost changes over time for the 10-way select-join and

the 20-way select-join of query type Q1 when the slec-
tivity and complexity are fixed to A2. The shapes of
graphs over time are similar for both cases. In these
cases, the final cost of SA is better than that of II in both
cases. The initial costs found by the initial_state
heuristic show a little difference. The initial cost for the
20-way select-join is higher than that for the 10-way
select-join.

Fig. 4(b)–(d) compare the cost changes over time for
the varying selectivity and complexity, A2, A3 and A4,
in the 20-way select-join of query type Q1. The cost
down over time is small for A3. A3 corresponds to the
case that the ESFAR effect is small. The initial costs of
all algorithms are higher for A4 than for A2 and the cost
down is more rapid for A4 than for A2. A4 corresponds
to the case that the ESFAR effect is large.

Fig. 5(b) shows the final costs of all heuristic algo-
rithms for the large select-join of query types Q1, Q2
and Q3. In most cases, the final costs for IIis and/or SAis

are slightly better than those for II and/or SA. Sum-
marizing, in most cases of Figs. 3–5, IIis and/or SAis

have lower initial costs than II and/or SA and rapidly
converge to the final cost. Especially IIis converges faster
than SAis and has a similar final cost with SAis.

5. Conclusions

Recently, there was a study about a query optimiza-
tion technique which took the characteristics of spatial
databases into account. The main idea of the study was
to start the two-step processing of a spatial query, which

Fig. 4. Average scaled cost of plans over time for large select-join queries: (a) n ¼ 10, A2; (b) n ¼ 20, A2; (c) n ¼ 20, A3; (d) n ¼ 20, A4.

8 The average scaled cost of a plan for the large select-join query is

defined as the average cost of the plan divided by the lowest final cost

of all plans for the specific query.
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has been applied only in the query execution phase,
from the query optimization phase. The study showed
that filter and refinement operations could be separated
at the algebraic operator level of the query optimization,
then the separated filter and refinement operators could
be combined with non-spatial operators or other spatial
operators at the same level. This optimization technique
was called ESFAR. In the study, an algebra, called
ISOA, and optimization rules for ESFAR were also
proposed.

The ESFAR optimization technique always generates
more efficient execution plans than the traditional one
because the ISOA operators include the traditional op-
erators and the ESFAR rules include the traditional
optimization rules. Because of more operators and more
rules, the ESFAR optimizer consumes more optimiza-
tion time than the traditional optimizer. In this paper,
we applied two well-known heuristic search algorithms,
II and SA, to the ESFAR optimizer. Additionally we
developed a new heuristic algorithm to find a good ini-
tial state of II and SA.

In our previous study, we implemented the execution
algorithms for ISOA. The experimental results using
the TIGER data showed that the ESFAR optimization
strategy generates more efficient query execution plans
than the traditional one in many cases. In this paper, we
improved the cost model of the ESFAR optimizer, and
implemented the ESFAR optimizer, and ran the opti-
mizer for the TIGER data, and compared the optimi-

zation results and the actual execution results. Especially
our cost model considered the real life environment such
as the LRU buffer, the clustering of the data, and the
selectivity considering the real data distribution. The
optimization results were similar with the actual execu-
tion results in most cases, and our optimizer estimated
the lowest cost execution plan well. Wrong optimization
results occurred only when the difference between the
cheapest execution plan and the second cheapest plan
was small.

VOG internally has the exhaustive search algorithm
to generate the optimal plan. We added two heuristic
search algorithms and our initial state heuristic to the
implementation of our ESFAR optimizer. Through ex-
periments, we showed that the heuristic algorithms for
ESFAR find a good sub-optimal plan in a reasonable
time. Mostly the heuristic algorithms found a lower cost
plan than the optimal plan generated by the traditional
optimizer. Especially the II algorithm with the initial
state heuristic rapidly found a plan of a high quality.
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Appendix A. Cost model

In this section, we describe a cost model applied to
the implementation of our optimizer. We assume that
there is an LRU buffer in the system and all data are
clustered on both a non-spatial attribute and a spatial
attribute. We consider only I/O time for non-spatial
operations, I/O time for spatial filter operations, and
both CPU and I/O time for spatial refinement opera-
tions. The CPU time for spatial refinement operations is
only for geometric computation time.

A.1. Costs for non-spatial operations

We summarize cost models for non-spatial operations
using references such as (Silberschatz et al., 1997; Ull-
man, 1988; Yao, 1977). Table 6 shows the statistics per
class and attribute used for the computation of costs for
non-spatial operations.

A.1.1. Non-spatial select

(1) N_Seq-Select

CioðN Seq SelectÞ ¼ jRj: ðA:1Þ
(2) Btree-Select

CioðBtree SelectÞ ¼ index page read þ data page read

¼ nonleaf page read þ leaf page read

þ data page read

¼ ðhR � 1Þ þ dk=f e þ Y ðkRk; jRj; kÞ;
where k ¼ Sp � kRk; ðA:2Þ

Sp ¼

1
V ðR:AÞ where p ¼ ‘ ¼ ’;
const�minðR:AÞ

maxðR:AÞ�minðR:AÞ where p ¼ ‘ < ’; ‘6 ’;
maxðR:AÞ�const

maxðR:AÞ�minðR:AÞ where p ¼ ‘ > ’; ‘P ’;

8><
>: ðA:3Þ

Y ðn;m; kÞ in Eq. (A.2) stands for Yao’s formula (Yao,
1977), which was approximated to the following equa-
tion in (Chung, 1983):

Y ðn;m; kÞ ¼

k; m ¼ n;
1; m ¼ 1;
m; 1 < m < n; k > n� n

m ;

m 1� 1� k
n

� �n=m� �
;

1 < m < n; n
m < k6n� n

m ;

m 1� 1� 1
m

� �k� �
;

1 < m < n; k <min n� n
m ;

n
m

� �
:

8>>>>>>>>>><
>>>>>>>>>>:

ðA:4Þ

If all objects in class R are clustered on attribute A

CcioðBtree SelectÞ ¼ ðhR � 1Þ þ dk=f e þ Sp � jRj: ðA:5Þ

A.1.2. Non-spatial join

(1) N_Indexed-Nested-Loop-Join

CioðN INLJÞ ¼ jRj þ kRk � ðindex page read

þ data page readÞ
¼ jRj þ kRk � ðhS þ Jp � kSkÞ;

where Jp ¼ 1

maxðV ðR:AÞ; V ðS:AÞÞ : ðA:6Þ

If all objects in class S are clustered on attribute A

CcioðN INLJÞ ¼ jRj þ kRk � ðhS þ Jp � jSjÞ: ðA:7Þ
The indexed nested loop join performs the B-tree select
operation repeatedly. If the system has an LRU buffer,
the I/O cost will be greatly reduced. If the outer class is
ordered along the indexed attribute of the inner class,
the successive B-tree operations will access nearly the
same nodes with a very small difference. Therefore, the
miss ratio of the index access except the initial access will
be close to zero. The I/O cost for the clustered and
buffered indexed nested loop join is the following
equation:

CcbioðN INLJÞ ¼ jRj þ J 0
p �

XhS�1

l¼0

Nl

 
þ jSj

!
; ðA:8Þ

where

Nl ¼
kSk
f l

;

J 0
p ¼

minðmaxðR:AÞ;maxðS:AÞÞ
maxðS:AÞ �minðS:AÞ

�maxðminðR:AÞ;minðS:AÞÞ
maxðS:AÞ �minðS:AÞ :

Table 6

Statistics for non-spatial operations

Symbol Meaning

jRj; jSj Number of pages

kRk; kSk Number of objects

kJRk; kJSk Number of objects participating the join

between R and S

Nl;Ml Number of entries in level l of B+-tree in

classes R and S

hR; hS Height of B+-tree

f Average fan-out of a B+-tree node

Sp; Jp Selectivity for non-spatial select or non-

spatial join

V ðR:AÞ; V ðS:AÞ Number of unique values for attribute A

minðR:AÞ Minimum value for attribute A

maxðR:AÞ Maximum value for attribute A
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(2) Btree-Join

CioðBtree JoinÞ ¼ index page read þ data page read

¼ hR � 1þ hS � 1þ dkRk=f e þ dkSk=f e
þ kJRk þ kJSk; ðA:9Þ

where

J ¼ kRk � V ðS:AÞ
maxðV ðR:AÞ; V ðS:AÞÞ ;

JS ¼ kSk � V ðR:AÞ
maxðV ðR:AÞ; V ðS:AÞÞ :

If all objects in classes R and S are clustered on attribute
A

CcioðBtree JoinÞ ¼ hR � 1þ hS � 1þ dkRk=f e
þ dkSk=f e þ jRj þ jSj: ðA:10Þ

(3) Non-spatial hash-join
The I/O cost for the non-spatial hash join (NHJ) was

presented in Silberschatz et al. (1997). The hash join
consists of the partition phase and the join phase. The I/
O cost formulae for NHJ are like the following:

Cpart ¼ 2 � ðjRj þ jSjÞ; ðA:11Þ

Cjoin ¼ jRj þ jSj; ðA:12Þ

CioðNHJÞ ¼ Cpart þ Cjoin ¼ 3 � ðjRj þ jSjÞ: ðA:13Þ

A.2. Costs for spatial operations

We summarize the following equations with refer-
ences to the cost models for spatial operations in Huang
et al. (1997), Kamel and Faloutsos (1993), Lee and
Chung (2000), Pagel et al. (1993), Theodoridis and Sellis
(1996), Theodoridis et al. (1998). We assume that all
spatial objects are normalized to fit within the unit space
½0; 1�2. The statistics per class and attribute used for the
computation of costs for spatial operations are shown in
Table 7 in addition to Table 6.

A.2.1. Spatial select

(1) S_Seq-Select

CioðS Seq SelectÞ ¼ jRj; ðA:14Þ

CcpuðS Seq SelectÞ ¼ kRk � Tgc: ðA:15Þ
In Eq. (A.15), Tgc means the geometric computation
time for a spatial object and is represented by Eq. (A.16)
for the spatial select operation such as the window query

Tgc ¼ v � Tedge–rect: ðA:16Þ
(2) Rtree-Select

CioðRtree SelectÞ ¼ index page read þ data page read

¼
Xh�1

l¼0

XNl

i¼1

ðnlix þ qxÞ � ðnliy þ qyÞ

þ Y ðkRk; jRj; kÞ

¼
Xh�1

l¼0

Nl � ðnlx þ qxÞ � ðnly þ qyÞ

þ Y ðkRk; jRj; kÞ; ðA:17Þ
where

k ¼
XN
i¼1

ðnix þ qxÞ � ðniy þ qyÞ ¼ N � ðnx þ qxÞ � ðny þ qyÞ:

If all objects in class R are clustered on the spatial
attribute

CcioðRtree SelectÞ ¼
Xh�1

l¼0

Nl � ðnlx þ qxÞ � ðnly þ qyÞ

þ jRj � ðnx þ qxÞ � ðny þ qyÞ; ðA:18Þ

CcpuðRtree SelectÞ ¼ number of candidates

� geometric computation time

¼ Ncand � Tgc: ðA:19Þ

Calculating candidate objects in a window query is
presented in Lee and Chung (2000) and represented by
Eqs. (A.20) and (A.21). Nhit in Eq. (A.20) is for objects
that were already hit in the filter step and do not need
the geometric computation, and ðNcand in Eq. (A.21) is
for candidate objects that need the geometric compu-
tation.

Table 7

Statistics for spatial operations

Symbol Meaning

N ;M Total number of MBR for spatial objects in

classes R and S

Nl;Ml Number of MBR in level l of R�-tree in classes

R and S

hðhR; hSÞ Height of R�-tree in classes R and S

f Average fan-out of an R�-tree node

nix, mix, niy , miy x-Length and y-length of MBR for a spatial

object i in classes R and S

nlix, mlix, nliy , mliy x-Length and y-length of MBR i in level l of

R�-tree in classes R and S

nx;mx; ny ;my Average x-length and y-length of MBRs for

spatial objects in classes R and S

nlx;mlx; nly ;mly Average x-length and y-length of MBRs in

level l of R�-tree in classes R and S

v;w Average number of points for spatial objects

in classes R and S

N � Number of window queries until the steady

state buffer hit probability
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Nhit ¼
N � ðnx þ qxÞ � ðny þ qyÞ � 4 � nx � ny

� �
;

qx > nx; qy > ny ;
0; otherwise;

8<
: ðA:20Þ

Ncand ¼ 4 � nx � ny : ðA:21Þ
Theodoridis and Sellis (1996) derived the non-leaf level
parameters of R-tree using only the amount and density
of spatial objects. The density of spatial objects can be
represented by an average MBR size

h ¼ 1þ logf
N
f

� 

; ðA:22Þ

Nl ¼
N
f l

; ðA:23Þ

nlþ1;x ¼
ffiffiffi
f

p�
� 1
�
� 1ffiffiffiffiffi

Nl
p þ nl;x; ðA:24Þ

nl;x ¼
1ffiffiffiffi
N

p
ffiffiffi
f

p l
�

�
ffiffiffi
f

p �
þ nx: ðA:25Þ

A.2.2. Spatial join

(1) S_Indexed-Nested-Loop-Join

CioðS INLJÞ
¼ jRj þ kRk � ðindex page read þ data page readÞ

¼ jRj þ kRk �
XhS�1

l¼0

Ml � ðmlx

 
þ nxÞ � ðmly þ nyÞ

þ M � ðmx þ nxÞ � ðmy þ nyÞ
!
: ðA:26Þ

If all objects in class S are clustered on the spatial at-
tribute

CcioðS INLJÞ

¼ jRj þ kRk �
XhS�1

l¼0

Ml � ðmlx

 
þ nxÞ � ðmly þ nyÞ

þ jSj � ðmx þ nxÞ � ðmy þ nyÞ
!
; ðA:27Þ

CcpuðS INLJÞ ¼ kRk � number of candidates

� geometric computation time

¼ kRk �M � ðmx þ nxÞ � ðmy þ nyÞ � Tgc:

ðA:28Þ
In Eq. (A.28), Tgc is the geometric computation time for
the spatial join. We assume only the intersection join.
The intersection join can be implemented by the plane
sweep algorithm. The computation time for the plane
sweep algorithm is represented by Eq. (A.29)

Tgc ¼ ðvþ wÞ log2ðvþ wÞ � Tedge–edge: ðA:29Þ

The indexed nested loop join performs the repeated
window queries. If the system has an LRU buffer, the
actual I/O time will be much smaller than Eq. (A.26).
In an LRU buffered environment, a cost model for the
window query was presented in Leutenegger and Lopez
(1998). According to Leutenegger and Lopez (1998),
Eq. (A.18) must be changed as the following equation in
an LRU buffered environment:

CcbioðRtree SelectÞ ¼
Xh�1

l¼0

Nl � ðnlx þ qxÞ � ðnly þ qyÞ

� 1
�

� ðnlx þ qxÞ � ðnly þ qyÞ
�N�

þ jRj � ðnx þ qxÞ � ðny þ qyÞ:
ðA:30Þ

Therefore, the I/O cost for the indexed nested loop join
in a clustered and buffered environment is like the fol-
lowing:

CcbioðS INLJÞ ¼ jRj þ kRk �
XhS�1

l¼0

Ml � ðmlx

 
þ nxÞ

�ðmly þ nyÞ � ð1� ðmlx þ nxÞ

�ðmly þ nyÞÞN
�

!
þ jSj � Qx � Qy ;

ðA:31Þ

where
Qx � Qy ¼ an MBR enclosing all rectangles in class R.

(2) Rtree-Join
The I/O time for the R-tree join was presented in

Huang et al. (1997), Theodoridis et al. (1998). Especially
in Huang et al. (1997), the model estimating the number
of I/O for the R-tree join when LRU buffers exist was
presented. The I/O time for the R-tree join in the case of
no buffering is represented by Eq. (A.32) and the CPU
time for the refinement step is represented by Eq. (A.34)

CioðRtree JoinÞ
¼ index page read þ data page read

¼
Xh�1

l¼0

XNl

i¼1

XMl

j¼1

ðnlix þ mljxÞ � ðnliy þ mljyÞ � 2

þ
XN
i¼1

XM
j¼1

ðnix þ mjxÞ � ðniy þ mjyÞ � 2

¼
Xh�1

l¼0

Nl �Ml � ðnlx þ mlxÞ � ðnly þ mlyÞ � 2

þ N �M � ðnx þ mxÞ � ðny þ myÞ � 2: ðA:32Þ

If all objects in classes R and S are clustered on the
spatial attribute

CcioðRtree JoinÞ ¼
Xh�1

l¼0

Nl �Ml � ðnlx þ mlxÞ

� ðnly þ mlyÞ � 2þ jRj þ jSj; ðA:33Þ
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CcpuðRtree JoinÞ ¼ number of candidates

� geometric computation timeN

�M � ðnx þ mxÞ � ðny þ myÞ � Tgc:

ðA:34Þ

As in the case of Huang et al. (1997), if we denote the
index_page_read portion of CioðRtree JoinÞ as ZEIO
(zero-buffer expected I/O),

ZEIO ¼
Xh�1

l¼0

Nl �Ml � ðnlx þ mlxÞ � ðnly þ mlyÞ � 2:

ðA:35Þ
According to Huang et al. (1997), the expected I/O
(EIO) of the R-tree join in an LRU buffered environ-
ment is estimated by the following equation:

EIO ¼ P þ Qþ ðZEIO � P � QÞ � PfxP bg;

where P ¼
Xh
l¼1

Nl; Q ¼
Xh
l¼1

Ml: ðA:36Þ

In the above equation, x denotes a random variable
which represents the number of page faults between two
consecutive accesses for an R�-tree node, and b denotes
the number of buffer entries in a system. Huang et al.
(1997) applied the exponential distribution as the dis-
tribution function of x. Therefore, PfxP bg in the
above equation is calculated like the following:

f ðxÞ ¼ ke�kx; where k ¼ 1

l
; ðA:37Þ

F ðxÞ ¼ 1� e�kx; ðA:38Þ

PfxP bg ¼ 1� F ðbÞ: ðA:39Þ

The value of l, i.e., the mean of x, was approximated to
the following (Huang et al., 1997):

l ¼ c � ZEIO

P þ Q
: ðA:40Þ

Consequently, the I/O cost for the R-tree join in a
clustered and buffered environment is estimated as fol-
lows:

CcbioðRtree JoinÞ ¼ EIOþ jRj þ jSj: ðA:41Þ
(3) Spatial hash-join
The I/O cost for the SHJ was presented in Koudas

and Sevcik (1997), Mamoulis and Papadias (2000).
Generally the hash join consists of the partition phase
and the join phase. For partitioning of datasets, both
datasets are read and hashed into buckets. The parti-
tioning cost of SHJ is given by the following formula:
rS and fS represent the replication and filtering ratios
of jSj:

Cpart ¼ 2 � jRj þ ð2þ rS � fSÞ � jSj: ðA:42Þ

Next, the data from each bucket pair will be joined. The
join cost of SHJ is

Cjoin ¼ jRj þ ð1þ rS � fSÞ � jSj: ðA:43Þ

Summarizing, the total I/O cost of SHJ considering an
LRU buffer is

CioðSHJÞ ¼ Cpart þ Cjoin

¼ 3 � jRj þ ð3þ rS � fSÞ � jSj: ðA:44Þ

The CPU time for SHJ is the same as that for the R-tree
join, i.e., Eq. (A.34).
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